
SDL-2000 for new millennium systems
BY RICK REED

1

SDL is the premier language for specification, design and development of real
time systems, and in particular for telecommunication applications.
SDL-2000 became the international standard in force in November 1999,
replacing the previous version. This paper gives an overview of SDL-2000
and fills the gap between previously published tutorials and the current SDL
standard.

Keywords: SDL, SDL-2000, SDL-92, SDL-88, current SDL,
MSC, ITU-T, Z.100, Z.105, Z.106, Z.107, Z.109, ASN.1,
Z.120, Conformance, Standards, Recommendations,
simplification, exceptions, SDL combined with UML, data
methods, data objects.

1 Introduction to SDL
The success of SDL [1, 2] can be attributed to its graphical
presentation form. This makes it easy to understand
specifications and designs expressed using SDL. They are
good for communication even to anyone that has little
knowledge of the language. Another factor is the conceptual
suitability of the basis of the language: the notion of an
extended finite state machine (EFSM). SDL offers a practical
way of specifying systems with several communicating EFSM
instances. An SDL system consists of one or more
communicating agents. There is one outermost agent: this
communicates with the environment. In agents, there is
definition of behaviour by EFSM, hierarchical structure with
agents containing agents, data variables (owned by agents) of
value or reference data types, and communication based on
asynchronous message exchange.
When systems are specified or designed (in the rest of this
article the verb �specify� should be taken to include design),
the usual starting point is some kind of top level picture
showing the connection between components of the system
and the environment. Such pictures usually take the form of
labelled boxes joined by labelled lines. SDL can be used, even
at this level, to start turning sketches into a formal system
description: the names on boxes become the names of SDL
components and the names on lines can become the names of
SDL channels or associations. Such descriptions are abstract
models of real systems. Of course, as an object oriented
language, SDL can also be used bottom-up, based on a set of
components, or �middle-out�.
The SDL specification for a system is a set of diagrams. Each
diagram has one or more presentation �pages�, and each page
has:
- a frame (often with some information attached on the

outside);
- the diagram heading giving the kind and identity of the

item described by the diagram in the top left corner;
- the page name and number of pages in the top right

corner.

1.1 Simple structure
A very simple example is shown in Figure 1. This system agent
diagram contains two process agents. A channel ()
conveys signals between two agents or between an agent and
the environment of a diagram. The signal names are listed in
the symbol near the arrowhead, which gives the direction.
Channels can have names, but these are omitted here, as they
are not needed. A system diagram can contain process agents
(symbol), or block agents (symbol). The system itself
is the special case of the outermost block agent.
The essential difference between a block (or system) agent and
a process agent is that the instances of agents within a block
agent behave concurrently and asynchronously with each
other, whereas instances within a process are scheduled one at
a time. A block agent can contain process agents or block
agents. A process agent can only contain other process agents.
As well as containing other agents, agents can contain a state
machine, data variables and procedures. An agent SDL
diagram is the definition of a set of agent instances. Each
agent instance of such a set is created either when the instance
containing the set is created or by a create-action in another
agent instance. The system agent is created when the system is
initialized.
Agent diagrams act as scope units hiding internally defined
items. These include the items mentioned above, signals for
communication and locally defined types of data. Items
defined in enclosing agent diagrams are visible in inner agents.
Thus, the signals 0 and 1 are visible inside send_bits and
receive_bits. On the other hand, items defined inside these
process agents are not visible at the system level.
The symbols containing the names (and similarly
symbols containing names) are links (called �references� in
Z.100) to other diagrams considered to be defined where the
symbol occurs (process send_bits is defined in the system
bitstuff_transmission). The defining context and kind of the
entity (such as block, process, and signal) is part of entity�s
identity. Complete identities must be unique, but names need
not be unique.

system bitstuff_transmission 1(1)

send_bits receive_
_bits[0,1]

signal 0,1;

[0,1][0,1]

Figure 1 Example simple system model � Bit-stuffing one-way transmission.
This system consists of a send-bits transmitter and a receive-bits receiver. The transmitter inserts
(�stuffs in�) bits so that there are never n bits the same. The receiver removes the inserted bits. This
technique is used in real systems to protect against �stuck at zero or one� or (for example in
Signalling System 7) to allow flags that consist of n ones or zeros to be inserted without the risk
that they are imitated by signals.

Names and underlines
Names consist of letters, digits and
underlines; names that only contain digits
are allowed. However, an underline
character at the end of a line is a
continuation and not part of a name.

2

1.2 Simple behaviour
An agent diagram, such as Figure 1, has the possibility to show
the interaction between the contained agents, and is called an
interaction diagram. An agent that only contains one state
machine (typically a process) can have the behaviour graph in
the agent diagram (otherwise, it has to be linked to a state
diagram for the state machine graph).
In Figure 2, the send_bits process contains a finite state
machine that has:
- a start (symbol) where it starts;
- states (symbols) containing state names: initial, 0, 00,

000, 0000, 1, 11, 111 and 1111) with associated inputs
(symbols) for the stimulus signals 0 and 1;

- transitions to the next state with outputs (symbols)
for the response signals 0 and 1.

The response of the state machine is determined by following
the flow from state to state in the diagram. The start leads to a
state, possibly via other symbols. Once at a state, the machine
waits until one of the signals that can be consumed in the state
is available. This is immediately if the first signal queued in the
agent�s input port can be consumed, otherwise the machine
will wait. Each input leads to other states via other symbols
(such as outputs) to the next state.
An output symbol may contain more than one signal (in the
example 1, 1 meaning that two 1 signals are sent). The next state
can be indicated by a symbol with the state name (in the
example 11 after the output of 1, 1), which in this case acts as
a connector.
SDL extends the finite state machine paradigm in two
important ways:
1. Each agent has an input port that queues received signals

on a first-in-first-out basis, so that the signals are
(normally) processed in the order they are received;

2. Data can be received in signals, stored in variables,
manipulated, used in expressions, used to decide how the
agent will behave, and passed in output signals.

The receive bits process in Figure 3 uses data, and therefore the

process send_bits 1(1)

0

0

0 1

0

0

0 1

00

0

0 1

000

1

0000

1

1 0

1

1

1 0

11

1

1 0

111

0

1 0

1111

0 1

initial

1

0,0

0011

1,1

0 1

Figure 2 The send bits process as a finite state machine.

process receive_bits 1(1)
dcl
count0 Natural:=0,
count1 Natural:=0;
synonym n Natural=4;wait

0

0

count0:=
count0+1;

count0

ELSE

count1

count1:=
0;

wait

ELSE

n

n+1

1

1

count1:=
count0+1;

count1

ELSE

count0

count0:=
0;

wait

ELSE

n

n+1

Figure 3 The receive bits process as an extended finite state machine.

Uniqueness and qualifiers
A name is usually sufficient to identify an entity, but the
full identifier includes a qualifier that gives the context
where the entity is defined.
The qualified signal <<system bitstuff_transmission>> 0
is distinct from the Integer data item called 0 or a signal
<<send_bits>>0 (that is, a signal 0 defined in send_bits). In
practice, these qualified names (<<context path>> is a
�qualifier�) need only be used when necessary, which
occurs rarely.

3

number of explicit states is reduced to one and the
specification allows n to be easily changed to any value. The
data declaration (dcl) introduces two variables, count0 and
count1, and a synonym relation is defined between n and a
constant value 4. The receive bits process also has:
- decisions () that can have two or more alternatives,

one of which can be else � the path taken after a decision
is the one labelled with a value that matches the
expression in the symbol;

- tasks () that contain one or more statements �
typically assignment statements, but can include textual
loops, textual procedure or method calls, textual if, and
textual decision statements;

- text () symbols that are used to contain data
definitions, signal definitions and other textual definitions;

- stops () for terminating the state machine and in this
case the process agent.

Note that the stops are unreachable in the example if the
send_bits process works correctly.

2 Basic communication and timers
As seen in the example in the previous section, signals are the
primary means of communication between state machines (see
7 for other means). Timers provide a real time element to
SDL, and generate associated timer signals.
2.1 Signal communication
Signals can be defined with or without parameters, and the
paths used are shown by the lists attached to channels and
gates as shown throughout the figures in this article. An
output using the signal name generates an instance of the
signal. When a signal instance arrives at the destination agent,
it remains in the input port until it is consumed, at which time
the instance ceases to exist. On output, parameters of a signal
can be given the values of expressions listed in parentheses
after the signal name. On input, the parameters of a signal can
be assigned to variables listed in parentheses after the signal
name.

When there is more than one path, communication can be
directed in the output to specific destinations by a processing
identity (Pid) value, an agent name or via path. If there is
more than one path, an arbitrary one is used.
These values can be stored in variables for use later. In
Figure 5, X can only take path c1, but Y can take g1 or c1.
Y via c1 ensures the signal goes to p2. Y to sender or Y to kid
directs the signal to a specific destination but on either path.
Four Pid expressions are available to each agent for
communications:
self an agent�s own identity;

parent the agent that created the agent � Null for initial
agents;

offspring the most recent agent created by the agent � Null
initially or if creation fails because the maximum
number of instances already exists;

sender the agent that sent the last signal input- Null
before any signal received.

2.2 Timers
An agent can have timers defined. A timer is created by a
definition, such as

timer t4 := 10.5;

A timer can be started with a set and cancelled with a reset.
When the timer is set it becomes active and will expire when
the time specified in the set has been past.
The expression
active (t4) tests if the timer t4 is active.
set(now+3.2, t4) � sets the timer to 3.2 from the current time.
set(t4) � sets the timer t4 to the duration (optionally) given in
the timer definition from the current time, which for t4 is
now+10.5, see Figure 6.

 process 02_Cstate 1(1)

in1

Sig2

2idle

2ready

Sig2

Sig3

Out1

Out1

in1

Figure 4:The state 02_Cstate.

block b 1(1)
p1(1,1) kid(1,3)c1

[X,Y]
g1
[Y]

process p1 7(9)

Y via c1

d

c

X

b

a

Y to sender

f

e

kid:=offspring

h

g

Y to kid

k

j

Figure 5: Number of instances; signal directions
in output.

4

If the timer expires then a signal of the same name (in this
case t4) is put in the input port of the agent. It is quite usual to
have a reset (t4) before the timer expires in which case it is
cancelled, or if the signal is already in the input port, it is
removed.
A typical use of a timer is shown in Figure 6.
Timer definitions are NOT allowed in state diagrams or
procedure diagrams (outlined in 6.3 and 6.4 respectively).

3 System engineering
Although the state machines are essential to
specify behaviour (that is, what responses are
given to particular stimulus sequences), complex
systems often involve several levels of
decomposition before state machines are
reached. After producing a top-level diagram,
the next step is often to determine the various
attributes and structures of each component
rather than designing state machines. Some
would argue that recognising the �objects� in the system, their
attributes and the relationships between objects should be the
first step.
Rarely are engineers given such a simple case as in Figure 1
More likely the case would be more complex as indicated by
the following informal statement: �The message transfer part of our
system has some control transfer functions that interface with link control
functions. Link control uses data signalling links defined by the following
standards � Design the Link Control Function (LCF) to support the
Message Transfer Part (MTP) with the following characteristics�
LCF is expected to � �.
In most cases, engineering involves domain and requirements
analysis as well as application specification, design and
implementation. For analysis, knowledge and experience are
important factors, but natural languages have proved
inadequate to complete the task effectively and efficiently [3].
Well-defined notations are needed to provide common
understanding of the object and property models and to

enable the models to be checked (before too much money is
spent).
The essential models for analysis are use scenarios with use
sequences (these can be captured in MSC-2000 [4, 5]) and the
object model. SDL-2000 uses the same object model notation
as UML [6] for this purpose. A feature of engineering is that
the diagrams change and evolve and there may be many
different versions, even if only one is retained at the end. The
final object model can be a traceable evolution of the initial
analysis model.
In the rest of this article, an example has been taken from ITU
Recommendation Q.703: Signalling System No. 7 - Message
Transfer Part � Signalling Link, otherwise known as level 2.
Of the several functions of level 2, the signal unit delimitation,
alignment and error detection are considered, which interfaces
with level 1, the signalling data link. For delimitation, an eight-
bit flag 01111110 is inserted into messages after �bit-stuffing�
to ensure six ones cannot otherwise occur. On reception, the
flags are removed, and the messages �unstuffed�.
The initial model of a system would normally be considered a
�context model� showing the main objects and interfaces.
This is usually the initial version of the final top level
specification, which for the example is the SDL diagram in
Figure 7, the details of which will be described subsequently.

Analysis of the small part of Q.703 results in the diagrams in
Figure 7, Figure 8, Figure 9 and Figure 10 containing:
- an interface I1i_f for transmission and reception of Bits

from level 1;
- two interfaces with the rest of level 2, to_daed and

from_daed;
- two agents DAED1 and DAED2 of type DAEDtype, each

containing agents for:
1. �delimitation, alignment and error detection

(transmission)� DAEDT;
2. �delimitation, alignment and error detection

(receiving)� DAEDR;
3. if error handling is included a �signal unit error rate

monitor� SUERM, see Figure 10.

timer t4 = 10.5;

7(9)process timer_example

set(t4);

con2

reset(t4);

resp

Wait_resp

t4

err

norm

Figure 6: Typical timer use.

use DAEDpack/DAEDtype, l1i_f, to_daed, from_daed;

l1i_f

to_daed to_daed

l1i_f
DAED2:DAEDtype

from_daed

DAED1:DAEDtype

1(1)block level1interface

txc_and_rc

lev1 1lev

txc_and_rclev11lev

from_daed

Figure 7 The level 1 interface for Q.703, re-using the same BLOCK for both ends. The
communication carried by the channels is defined by attached interface names: l1I-f, to_daed and
from_daed.

5

3.1 Structure and types
The block level1interface, Figure 7, uses the block type
DAEDtype from package DAEDpack (for packages and
their use see 3.5). End to end signal unit transport has two
DAED units connected by level 1. In Figure 7, the type
DAEDtype is used twice as the basis for DAED1 and
DAED2. The diagram that contains the types, in
particular the definition of DAEDtype, (often called an
�object model�) corresponding to the analysis is shown in
Figure 14. Note that for illustration in this article, it is
assumed that two systems for the level 1 interface are
defined: one without and one with error rate monitoring.
Therefore, two versions of the DAEDR agent are
provided in Figure 14. These two different specifications
could (for example) be used as the basis for different
conformance tests.
DAED1 and DEAD2 are linked by the name DAEDtype to
the diagram in Figure 9, which is linked by the daedrtype and
daedttype in block type () or process type () symbols
to the diagrams that defined these agent types.
The labelled arrows outside the frame in Figure 9 are gates.
Channels are connected to these inside the frame, and when
the type is used, channels are connected to the gates from
outside the relevant symbol. For example, daedttype has a gate
txc that consumes signal_unit signals and generates transmission-
_request signals. Interface names could have been used instead
of signals.
For a system that consists of a single block or process,
enclosing digrams are not essential, therefore in Figure 7 there
are no connections to the channels outside the frame.
Normally a gate or a channel name would have to be shown.
In general channel and gate names can be omitted from
diagrams if there is no need to refer to the channel. No name
is needed on the channels inside the frame, as the
communication is clear from the interface names given for

each direction.
Even when names are not needed by SDL, it is sometimes
useful to put them in. In the alternative version of the system
(Figure 8), the channels have been named (u1,e1,e2,u2) so that
it is possible to distinguish between the two sides.
In simple systems such as Figure 1, the object instances are
shown as SDL definitions (such as a block or a process) that
have an implied type definition. If several objects have the
same properties, using explicit types makes the SDL simpler.
A type definition can be re-used in several places in the SDL
specification, and its properties can be inherited to make
specialisations of the type. For example in two-way systems, it
is quite usual for the transceiver description to be re-used at
both ends. In a system with several kinds of termination, a
general type of termination can be specialised for each case.
Types have to have fewer context dependencies, so that they
can be used in different contexts, and context independence
means that types can be used as components in different
systems.
3.2 Inheritance and virtuality

use DAEDpack/DAEDerrtype, l1i_f, to_daed, from_daed; use ermpack;

l1i_f

to_daed to_daed

l1i_f
DAED2e:DAEDerrtype

from_daed

DAED1e:DAEDerrtype

1(1)block level1if_with_err

txc_and_rc

lev1 1lev

txc_and_rclev11lev

from_daed

erm erm

u1 u2
ermstart,
ermstop e2

link_failure
e1

link_failure

ermstart,
ermstop

Figure 8 The level 1 interface for Q.703, with error handling.

Bits /*received*/

Bits

signal_unitDAEDR:
daedrtype daedr_

type

Bits

signal_unit

DAEDT:
daedttype

signal_unit

transmission_request,
signal_unit

Bits /*for transmission*/

daedt_
type

1(2)block type DAEDtype

 lev1

txc_and_rc

txc

level1

rc

level1

1lev

transmission_request signal_unit

SYNONYM flag Bit_String = '01111110'B;/*flag for signal unit*/
SYNONYM flaglen Natural = Length(flag)-2;/*number of ones*/

2(2)block type DAEDtype

virtual

Figure 9: The diagram for DAEDtype consisting of two �pages�.

6

When a type simply inherits from another type, it has the same
set of properties as the original type, but a distinct identity.
More typically, additional properties are also specified at the
same time. For example, DAEDtype in Figure 9 is inherited by
the DAEDerrtype, which handles errors in Figure 10. The extra
process agent su_erm is added, based on an extra type
suerm_type.
Inheritance is a general mechanism that applies to interaction
diagrams, to behaviour diagrams and to data types. In
behaviour diagrams new transitions can be added leading to
new states. In data types, new operations can be added.
However, it is not always sufficient to add new properties to a
type: it may be necessary to redefine some existing properties.
For example, in Figure 10 the additional signals needed are
generated by DAEDR based on the redefined daedrtype.
SDL clearly distinguishes those parts that are virtual and can
be redefined. All other parts are inherited unchanged and
cannot be changed: these are �finalized�. The fact that the
properties defined by the unchanged parts can be relied upon
in sub-classes, is a major advantage over languages where any
property of a super-class can be changed in a sub-class. A
redefined item is virtual, and can be redefined again if the
sub-class (here DAEDerrtype) is inherited again. On the other
hand, a virtual or redefined item does not have to be redefined
in a sub-class, in which case the definition from the super-
class is used. When redefinition is given, an item can also be
made finalized, so that it then cannot be changed in sub-
classes.
The agent type daedrprocess, defined in Figure 11 is redefined to
generate the extra signals (see Figure 12), but otherwise the
structure and behaviour of the rest is the same as in the
original daedrtype in DAEDtype. Symbols with dashed lines
indicate the use of existing items defined in a super type. The
examples here are the existing process () and existing
block ().

link_failure

ermstart,ermstop

ermstart,ermstop
link_failure

su_in_error, correct_su

DAEDR

su_erm:suerm_type<link_failure> SIGNAL su_in_error,
correct_su;

use ermpack/ermstart,ermstop,link_failure;

redefined
daedrtype

1(1)block type inherits DAEDtype;DAEDerrtype

daedg

fail

erm

from_LSC

suerm_
_type

Figure 10 The error handling version inherits the basic version.

signal_unit

signal_unit

Bits_
_Received

DAEDRx:
daedrprocess

Bits

Bits

rx_bits: bits_rxrbits_rxr

signal
Bits_Received(Bitstring);

virtual
daedr_
process

1(1)virtual block type
daedrtype

bits_in

bits_out

in_bits

rc

Figure 11 .The virtual block type daedrtype

su_in_error,correct_su

DAEDRx
finalized

daedr_
process

1(1)block typeredefined daedrtype

to_erm

su_in_error,correct_su

Figure 12 .The redefined block type.

7

3.3 Context parameters
Specialisation of types can also be done using context
parameters, for which actual parameters must be given before
a type is used. As an example, suerm_type has been defined
(Figure 13) to have a signal parameter for the failure signal, so
that the actual signal output can be changed. The actual
parameter, link_failure, is given after the use of suerm_type in
Figure 10.
Formal context parameters are given in a type definition after
the name of the type and enclosed in < and >. The actual
parameters are given after the use of the type name enclosed
in < and >.
As well as being a signal, a context parameter can be a block,
a process, a data variable, a synonym, a gate, an interface, a
procedure, an exception or timer; or a type for a block or
process or data.
3.4 Constraints
Context parameters, virtual types and gates can have
constraints. A constraint limits the actual parameters, type
redefinition and gate connections (respectively). By default, a
virtual type is constrained to be a sub-class of the base type
(the one with virtual). For example, any redefinition of
daedrtype in Figure 11 must by default be a sub-class of

daedrtype. However, it is permitted to specify that the constraint
is at least some other type, in which case a redefinition can
use inherits to explicitly inherit another type.
There are no defaults for context parameters, but these can
also be constrained by an at least. Similarly, gates can
normally be connected to any channel that conveys the
appropriate signals, but a constraint restricts connections. In
Figure 13, gate daedg must be connected to a block based on
daedrtype.
3.5 Packages
A package groups several type definitions together and allows
them to be used in several systems. Packages can also be used
within other packages, and it is quite usual to have a hierarchy
of dependencies between packages, which can be shown
diagrammatically (not illustrated here for reasons of space).
Figure 14 supports both the systems defined in Figure 7 and
Figure 8. Each interface contains the definition of the
relevant signals, or links to signal definitions by use (see
from_daed). Interfaces can also include definitions or uses of
two other ways of communicating between processes: remote
procedures and remote variables (see 7.1 and 7.2).

su_in_error,
correct_su

ermstart,ermstop failure

dcl C, N
synonym T Natural=10;

True

False

False

True

C:=C-1;
N:=0

N=256

False

N:=N+1

C=0

correct_
_su

True

failure

C=T

C:=C+1

su_in_
_errorermstop

C:=0;
N:=0

ermstart

1(1)process type <signal failure>suerm_type

failfrom_LSCdaedg

01_in_
_service

00_idle

01_in_
_service

00_idle

daedrtype

Figure 13 The Q.703 signal unit error rate monitor, adapted with a context parameter.

8

The three compartment class () symbols are linked to type
definitions. The top compartment contains the kind, here
block type () or process type (), and identity of the
type, such as DAEDtype. Where the types are actually defined
elsewhere, a qualifier is put before the name: deadt_type is
defined in <<DAEDtype>>. The specialization relation
(symbol) indicates that DAEDerrtype inherits DAEDtype
so that it includes the properties of daedt_type. The block type
daedr_type is also inherited, but is redefined, which is possible
because the original is virtual. The process type suerm is
added.
The lower two compartments of a class symbol optionally give
a definition of some properties of the linked type, so that a
reader does not have to refer to another diagram for them.
The middle compartment can contain attribute properties,
such as the variables if the linked type is an agent type. The
lower compartment can contain behaviour properties such as
a procedure name and its parameter sorts or a signal used in
the inputs of the linked object. In Figure 14, this use of the
class symbol is illustrated only for daedt_type, which has a
variable attribute property, su_bits and a procedure behaviour
property, insert_zeros. During engineering, it would be quite
normal to fill in some properties in the compartments first,
and elaborate the linked type later. The real property definition
is in the linked type, but tools can assist in copying or
checking consistency.
An association () is a form of annotation � it makes no
difference to the SDL meaning if it is removed. However,
associations are intended to have meaning in UML, and it is

expected that tools will do some checks between
associations and the SDL. Associations can be given
meaningful names and have attributes at each end (role
name, multiplicity range, ordered, private or restricted or
public visibility). The line can be plain, or with or at
one end indicating �composition� or �aggregation�. A

at either end shows that the end is �bound�. The terms
�composition�, �aggregation� and �bound� are not further
defined by SDL.
If no properties are included, the class symbols can be
�iconized�: that is replaced by the identity inside the type
symbol,(such as for a block type). For examples see
daedttype and daedrtype, used in Figure 9 for the process and
block DAEDT and DAEDR respectively.
The text box at the top of Figure 10 makes use of the
signals ermstart, ermstop and link_failure, all defined in a
package, ermpack. Also the whole object model is enclosed
in a package called DAEDpack in Figure 14.
One package named Predefined, is an integral part of the
language. It defines the data types: Boolean, Character,
String, Charstring, Integer, Natural, Real, Array, Vector,
Powerset, Duration, Time, Bag, Bit, Bitstring, Octet and
Octetstring. Some of these have context parameters that
need to have actual parameters to create new data types
before they can be used to declare variables (some
examples follow).

4 Data
SDL data is strongly typed. A data type can be a value
type that represents a set of values, or can be an object

type that represents object references. Each sort of data is
distinct. An element of one value type cannot be assigned
where another value type is required. An element of one
object type cannot be assigned where another object type is
required that is not a sub-type of the first. A value type
element can be assigned to an object type if they are based on
the same sort of data: an Integer value can be assigned to an
object Integer.

value type astring inherits String <Natural>;

defines astring as a data type that is a string of Natural
elements.

value type chlookup inherits Array <Character, Integer>;

defines a data type that is mapping for Character values to
Integer values.

value type c_array10 inherits vector <mystruct, 10>;

defines c_array10 as a data type indexed with an Integer in the
range 1:10 that gives mystruct values (where mystruct is a defined
data type).
package Predefined is implicitly part of every SDL model. The
example uses Bitstring, which is a string of Bits. Note that
Bitstring is indexed from zero to be compatible with ASN.1:
all other strings in SDL (including Octetstring) are indexed

package DAEDpack 1(1)

interface l1i_f { signal Bits(BitString); }
interface to_daed { signal signal_unit(BitString);}
interface from_daed { signal transmission_request; use signal_unit; }

<<DAEDtype>>daedt_type

su_bits Bitstring;

insert_zeros(Bitstring,Natural);

virtual
<<DAEDtype>>daedr_type

DAEDerrtype

redefined
<<DAEDerrtype>>daedr_type

DAEDtype

<<DAEDerrtype>>suerm_type

Figure 14: An object model of part of ITU Recommendation Q.703, as an SDL package.

9

from 1. Bit values are 0 and 1. Bitstring values can be '0'B,
'1'B, '00'B, '01'B etc. or (for example) 'B3'H meaning the same
as '10010011'B. The bit '�'B and hexadecimal '�'H notations
are also valid for Integer.
The Pid (processing identity) and Any data types are
considered as defined in package Predefined. Pid has a special
role in the language for referencing agents or interfaces to
agents, and therefore has a Null to indicate no reference. An
Any variable can be assigned a value or reference of any other
data type, and is therefore fully polymorphic.
Each of the data types defined in Predefined has a set of
operations. Some of these provide the normal infix notations
for Boolean, Integer and Real (such as and, or, +, -, *, /).
Other Predefined operations (such as mkstring) are operators that
use functional prefix notation.
String, Vector and Array based types can be indexed to give an
element.

dcl a1,a2 c_array10, I Integer;
/*allows assignments */

a2:=a1; /* the whole array */
a1[3]:=a2[I+1]; /* an element */

4.1 User data types
For data types beyond simple types such as Integer, user-
named types are defined either using Predefined types with
parameters (see astring, chlookup, and c_array10 above), or by
constructing new data types. Constructed data types are
enumerated with a list of literals, or a structure, or choice
type.
An example of an enumerated list is:

value type rbg {literals blue, red=0, green}

and has operators <, <=, >, >=, first, last, succ, pred and
num. Each literal must have a unique number. Literals without
numbers are given (left to right) the lowest available Natural
number, so blue=1 and green=2.
A structure has any number of fields, each of which can be
any named type including other structures, strings, vectors or
arrays.

value type S { struct
a Integer;
b Charstring optional;
c Character default 'd'; }

dcl s1 S, I Integer, X Character;
s1:= (. 3, '21', 'e' .); /*structure value */
s1.b:= mkstring(s1.c); /*field access */

The presence of the optional field b can be tested by
s1.bPresent, which gives a Boolean value. A field that has not
been assigned a value is undefined unless it has a default
value.
A choice is similar to a structure, but can only contain one
field at any one time, and assigning one of the choices makes
all other choices undefined.

value type C { choice
hue rgb;
bs Bitstring;}

A named data type can be defined that inherits the properties
of another data type, and properties can be added including
operations. An operation can be either an operator or a
method. An operator has a list of parameters and produces a
result. A method acts on a variable of the data type (and may
change it), and optionally takes a list of arguments, and may
produce a result. An operator uses functional prefix notation:
f(a,b), whereas a method uses dot notation: var.methodname(c,d).
The body of an operation can be defined using a textual
algorithm (for example see Figure 15) or by a linked diagram.
A synonym type (syntype) can be defined for any data type
that is assignment compatible with the parent type. Though
this could be used just to give the type another name, this is
usually combined with some limitation of the values of the
parent type. Values of a syntype can be assigned to the parent
type, but only those values defined by the syntype can be
assigned to a syntype variable or parameter. A common use is
to limit the range of Integer.

syntype Int16 = Integer constants 0:65535;

For types that have a Length operator (such as strings), a
syntype can include a size constraint. For example size(0,10)
means the length must be zero or 10.
4.2 Support for ASN.1
Several of the predefined data types have a direct equivalence
in ASN.1 [7]. SDL adds operators to ASN.1 data types, so that
the values can be manipulated in expressions. Bit, Bitstring,
Octet, and Octetstring were added to specifically support
ASN.1.
Other mappings from ASN.1 to SDL are defined in Z.105 [8].
This allows an ASN.1 module to be used with SDL, so that
the data types defined in ASN.1 are equivalent to data types
defined in SDL.
A value assignment in ASN.1 is mapped to a synonym.

myvalue INTEGER ::= 100;
is mapped to

synonym myvalue Integer = 100;

object type Slist {struct
elem S;
next Slist;

operators make(S)->Slist;
methods add(S);
operator make(s S)

{return (. s, Null .);}
method add(s S) {

dcl last S;
for (last:=this,

last.next/=Null,
last.next);

last.next:= make(s);
} }

Figure 15: An object type for a linked list of S elements..

10

A constrained type in ASN.1 is mapped to a syntype, so that

T ::= INTEGER(1..10)
is mapped to

syntype T = Integer constants 1:10;

An ASN.1 SEQUENCE (or SET these are treated the same)
is mapped to a structure type in SDL, which allows a variable
to have a number of fields. For example, the ASN.1

S ::= SEQUENCE {
a INTEGER,
b CHARSTRING OPTIONAL,
c CHARACTER DEFAULT 'd' }

is mapped to S as defined in 4.1 above, and similarly
CHOICE is mapped to the SDL choice. The corresponding
mapping for SEQUENCE values is to omit the field names
and convert the value to a structure value.

seqval S ::= {a 22, b 'pqr', c 'x'}
is mapped to

synonym seqval S = (. 22, 'pqr', 'x' .);

SEQUENCE OF, and SET OF, are mapped to the String and
Bag data types respectively. ENUMERATED types are
mapped to types with literals. In addition, Z.105 gives
mappings for ASN.1 parameterized types, object classes,
objects and object sets.

5 Agent creation
In most systems, there are multiple instances of various
agents, and some agents are created dynamically, particularly
when these are realised as software rather than hardware or
firmware. The definition of an agent therefore includes how
many initial instances of the agent there will be, and the
maximum number of instances. The default is one initial
instance and no limit on the maximum, and applies if explicit
numbers are not given by parentheses after the name. In
Figure 5 (also used in 2), process p1 is defined to have 1
initial instance and a maximum of 1 instance, and block b2 is
defined to have a maximum of 3 instances.
Agents can be created by other agents in a create request (
symbol) as part of a transition. One instance of the agent
definition identified in the request is created each time the
request is interpreted. Values can be passed to the agent in

parameter variables. A create request can also be used with an
agent type, in which case an instance is created as a member of
an agent set (implicitly created if one does not exist) of the
agent type in the scope surrounding the creator. Creation can
be indicated by create line (symbol) originating from the
creator and with its arrowhead at the created agent.
In Figure 17 the state machine of block half1if creates
(multiple) instances of DAEDm and Figure 16 shows the
create request in the state machine. Note that the state
machine of the block is represented by a single state symbol,
linked to the state diagram in Figure 16.

6 State machine diagrams
The state machine diagrams determine the behaviour of
Agents. They define what happens in each state and the
transitions between states. States are defined by both the
symbol and the attached symbols such as describing the
handling of stimuli in the state. Transitions are defined by the
symbols between the symbols for states, and the next state
symbol. Input is part of a state, not part of a transition, though
the signal mentioned triggers one.
6.1 Stimulus handling
Other symbols that can be attached to a state symbol to
describe stimulus handling are:
- save symbol that contains the names of signals that

are not consumed in that state;
- continuous signal symbol that contains a Boolean

expression � if there is no signal that can be consumed
and the expression is true, the attached transition is
triggered;

- immediately followed by containing a Boolean
expression making a signal with an enabling condition �
the signal named in is consumed and the attached
transition entered, only if the expression is true (the
expression cannot depend on the signal parameters);

- containing the keyword none indicating a
spontaneous event � the attached transition can be entered
at any time while waiting in the state.

The save is particularly important, because the channels
leading to the state machine determine signals that are valid
for all states in the machine. If a signal is not mentioned in any

2(3)state half1if

ids

make

wait

make(n)

0

wait

n else

DAEDm

n:=n-1;

ids(n,
offspring)

Figure 16: Description of a state machine in a block that creates
instances.

use daedpack;

Bits

(su)

(surx)

1(2)block half1if

DAEDm(0,):DAEDtype
txc_and_rc

lev1
1lev

half1if

Bits
ids

make

signallist su=signal_unit;
signallist surx=(su),transmission_request;

page 2 (not shown) contains

Figure 17: State machine in block that creates instances of an inner
block.

11

of the for the state, it is implied that it can be consumed
and there is an empty transition back to the state. Defining a
signal as saved in that state by using prevents this from
happening.
Whether a signal is saved or consumed is defined for each
state independently. If the machine enters a state and a signal
is saved in that state, all instances of that signal remain in the
input port and are not consumed as long as the machine
remains in that state. The next transition is triggered by the
first signal instance in the input port that can be consumed
(that is, not saved and not inhibited by an enabling condition
being false). If the triggered transition goes to a new next
state, this next state defines the sets of consumed and saved
signals.
6.2 Transitions
The components of a transition, such as output (), task
() and decision () seen in 1.2, are called actions.
Other actions and symbols that can occur within a transition
are:

- procedure call � see 6.3;

- return symbol � see 6.3;

- create request � see 5;

- raise exception � see 6.6;

- connector � this contains a label.

When a transition ends in a next state that does have any
stimulus handling attached, this symbol acts as a connector to
the symbol that defines the state. Although, this means
that it is possible to avoid connectors, they are sometimes
necessary. Out connectors have arrows pointing to them at the
end of the flow lines leading to the connectors. An in
connector can only have one flow line leading from it.
Logically, connectors are a continuation of flow. Figure 18 has
an example of a connector and procedure calls.
Two other symbols are also introduced in Figure 18, though
they can be used generally:
- text extension symbol � this can be attached to any

symbol and allows continuation of the text inside the
symbol. So the task containing the comment /*generate flags
*/ also logically contains su_bits:=flag//su_bits//flag;

- comment symbol � contains comment text and can
be attached to any symbol, such as the initial
transmission_request output with the comment DAEDT ->
TXC For first su;

6.3 Composite states
In all the above examples, there has been either no explicit
state machine or just one. If no explicit state machine is given
for the agent, an implicit one exists. If the agent contains other

agents, the explicit state machine must be given as in Figure 17
and Figure 16. There can be channels connecting the
symbol with the other agents and the environment. The
links to a composite state description that can be either a state
aggregation diagram, or a state machine diagram.
The state aggregation (see Figure 19) is similar to an agent
diagram containing a number of agents, except that it contains

 links to composite states instead of agents and no
channels are allowed. The linked composite state can be
considered as a partitioning of the state machine of the agent
into state machines that are interpreted in an interleaving
manner: only one machine can be in a transition at any one
time. When that transition reaches a state node, one of the
state machines that can enter a transition is scheduled. If no
machine is ready, the agent waits for a stimulus. Each of the
aggregated state machines must handle a different set of
inputs. An aggregate state only terminates when all the
contained states terminate.
A state machine diagram, which is linked from an agent
diagram containing other agents, has the same form as an
agent state machine diagram. This is the case in Figure 16, and
another example (state ATM) is given in [9].

su_bits:=
flag//su_bits//flag

signal_unittransmission_request

Bits

signal_unit
(su_bits)

generate_
_check_bits

insert_zeros
(su_bits,
flaglen-1)

following
each
five
consecutive
one's

for transmission
Level2 to Level1

DAEDT -> TXC
For first su

DAEDT
-> TXC

DCL
su_bits Bitstring;

generate_
_check_bits insert_zeros

1(1)process type
/* Delimitation alignment, error detection (transmission)*/

daedttype

level1

txc

01_
_in_service

transmission_
_request

con

/*generate
flags*/

Bits
(su_bits)

transmission_
_request

01_
_in_service

con

Figure 18: daedttype with connectors and procedure call.

12

A state machine diagram can also specify composite sub-states
of a state in another diagram. Figure 20 and Figure 4 show a
simple example. When 02_Cstate is entered, the process
remains in this composite state until either one of the returns
is reached, or a Sig1is received, which forces the sub-state to
terminate. Return via the unlabelled return () takes the
unlabelled transition from the 02_Cstate in composites. Return
via the labelled return () Out1 leads to the transition to
03_state. If 02_Cstate is entered via in1 the start symbol
containing in1 is used.

As well as state diagrams, state types can also be defined,
which allows composite states to be reused many places, like
procedures
6.4 Procedures
Figure 21 shows a procedure diagram. It is similar to a state
machine diagram except that it starts with a procedure start
() and ends with a return (). The procedure link ()
containing the procedure name shows where it is defined.
A procedure is part of a state machine diagram that is
separated out and encapsulated, providing a level of
abstraction and a component for re-use. Procedures can have
dynamic parameters. A procedure can return a result, and such
a procedure can be used in a expression. Procedures can
contain states and can be recursive.
A procedure is a type. The calls of the procedure are instances
of the type. As well as dynamic parameters for variables,
procedures can also have context parameters, for example for
signals. A procedure definition can inherit from another
definition or can be virtual and redefined in sub-types of the
enclosing type.
6.5 Textual algorithms
A task () contains one or more statements separated by
semicolons. These statements are not limited to assignments,
and can include:

- compound statement;
- if or decision statement;
- for statement;
- break and labelled statements;
- procedure call (see 6.3);
- set or reset action (see 0);
- raise statement (see 6.6);
- export action (see 7.2);
There are some occasions when graphical description of an
algorithm is not the most appropriate form, though this is
clearly a matter of opinion. A long and complex procedure
without any states might be better written textually. A
statement list can be used in a task symbol, as the body of a
compound statement, or as the body of a textual procedure or
operation in a text symbol. The last three cases all have the list

state aggregation Cs 1(1)

Service1

Service2

entry1 entera

enterb

Exit1

Exit2

Egress

Figure 19: The specification of a machine that is partitioned into two
interleaved machines. Cs can be entered without giving an entry point or
giving entry1. If no entry point is given both Service1 and Service2 are
entered via the start transitions without names. If entered via entry1,
Service1 is entered via entera Service2 via enterb. If Service1 terminates
at Exit1 and Serrvice2 terminates at Exit2, Cs will exit via Egress.
There can be more than one exit, and if the terminations are
inconsistent, an arbitrary one is used. Named entry and exit point are
only meaningful if Cs is a composite state in a state machine diagram
with named entries and exits. entry and exit connection points
are optional.

 process composites 2(3)

01_state

Sig2

02_Cstate
via in1

01_state

02_Cstate

Out1

03_state

Sig1

01_state

Sig1

Figure 20:The state 02_Cstate is a composite state that can be entered
via in1 and has an exit Out1.

count1:=0;

false

0

False

n:=n+1

bits:= if n<len
then Substring(bits,1,n+m) // '0'B
 //SubString(bits,n+m+1,len-n)
else bits//'0'B fi;
m:=m+1;

True

count1:=0;

count1
=max1

1

count1:=
count1+1;

true

bits
(n+m)

n=len

len:=Length
(bits)

dcl
count1, n, m, len Natural:=0;

1(1)procedure insert_zeros
(in/out bits Bitstring, in max1 Natural)

Figure 21: The procedure definition for zero_bits.

13

enclosed in curly brackets {}. The make and add in Figure 15
are defined in this way.
A compound statement (and textual body of a procedure or
operation) can have local variables only used in the statement.
An if statement takes the form
if (<Boolean expression>)

<consequence statement>
else <alternative statement>;

where the else part is optional.
A decision has the form
decision (<expression>){
(<range>): <statement>
(<range>): <statement>
�
}
where <range> specifies the constants for the statement to be
interpreted. It is exactly equivalent to a graphical decision and
there can be one else.
The for statement does not have one equivalent graphical
construct, and therefore is one benefit of using textual
algorithms. The general form is
for (<loop variable assignment>,

<loop test>,
<loop variable step>)

<controlled statement>
though, for simplicity, options and some alternatives have
been omitted here.
If a statement is preceded by a label, the statement can contain
a

break label
statement, which goes to the label. Note that it is not possible
to jump into a statement.
6.6 Exceptions
Some checks can only be made dynamically on SDL models.
This causes language defined exceptions to occur:
- OutOfRange, when a value is out of the range for a

syntype;
- InvalidReference, when there is an attempt to use Null to

reference an object or a Pid is used in an output to identify
a destination process that cannot receive the signal;

- NoMatchingAnswer, when no answer matches a decision
value;

- UndefinedVariable, when trying to get the contents of a
variable before it has been assigned a value;

- UndefinedField, when trying to get the contents of a field
that is undefined;

- InvalidIndex, when an index is out of range;
- DivisionByZero � division by zero;
- Empty � trying to take an element from a set (created

using a type derived from Powerset) that has no elements.
Handlers can be provided for these exceptions and for user
defined exceptions. If the exception occurs and is not handled
locally in a procedure, operation or compound statement that
item is terminated, and the exception can be passed to the
point of invocation in the caller.

An exception handler can be defined in an agent, agent type,
procedure or operation. The exception handler () symbol
contains the name, and handles one or more exceptions whose
names are in handle () symbols attached to an exception
handler symbol by lines.
An on exception () has its arrowhead connected to a
symbol containing a name. Like a next state symbol, this
symbol may be a connector to the actual definition of the
handler, or may be the head of the handler. The other end of
the on exception () is either not connected, in which case
the handler applies to the whole diagram, or is connected to a
specific symbol (such as a start, or state or input) in which
case it applies until the end of the transition. An exception
attached to an action applies just to that action.

exception e1, e2;

in a text symbol defines user exceptions e1 and e2.
An exception can be explicitly raised by a raise ()
containing the exception name. This terminates a transition,
and no symbol can follow it.
Figure 22 gives an example. check_bits_correct has the heading

procedure check_bits_correct ->Boolean;raise su_error;

7 Communications
Communication between agents takes place by signals (see
2.1), remote procedures and variables.
7.1 Communication using Remote procedures
One agent can communicate with another agent by a remote
procedure mechanism, so that the calling agent waits for a
response from the called agent. The agent that offers the
communication defines the procedure in the normal way, but

 finalized process type daedrprocess 2(3)

su_in_error,correct_su

true
false

su_
_error

correct_su

true false

true

Octet_
Counting

check_bits_
_correct

or
((len mod 8)/=0)
or not
(call check_
_bits_correct)

(len
<=40)

signal_unit
(su_bits),

delete_
check_bits

false

OctetCounting
:=False

len=0

len:=length
(su_bits)

redefined
Bits_Received

(su_bits)

to_erm

01_
_in_service

01_
_in_service

Serv_err Serv_err

su_in_
_error

su_
_recover

01_
_in_service

su_
_error

Invalid_
Index

report_
_error

exception su_error;

Figure 22: finalized daedrprocess with exception handling.

14

with exported in the heading, such as

exported procedure rp(in x xsort)->rsort;

There are some restrictions on the parameters and return
values of remote procedures. In a scope or interface common
to both the called and calling agents, a definition is given

remote procedure rp (in xsort)->rsort;

The procedure call can be written in the caller in a similar way
as any other procedure, but with the added possibility to
specify the destination of the call and a timer on the response.

myx:= rp (myx) to parent timer trp;

7.2 Communication using variables
One agent in a block cannot access the variables of another
agent in the same block or any other block. However, there is
a notation for exporting the value of a variable from one
process to another. If the owning process defines the variable
as exported (by dcl exported x xsort;), it can have an export
action that copies the variable value. In a scope or interface
common to both the exporter and importer, a definition is
given (remote x xsort;). The importer can invoke import
expression to the exporter (myx:= import (x);) and obtain the
copied value. In this way, the value is safely under the control
of the exporter.
A variable of an enclosing agent that has its dcl definition
directly visible to an enclosed agent, can be read or written by
either agent without the need to define a remote variable.
Where the enclosing agent is a process, no special mechanisms
are needed to access the variable. This is because the
scheduling of state machines within the process is alternating
at the transition level, no two state machines can be accessing
the variable at the same time.
Where the enclosing agent is a block, the scheduling of state
machines within the block can be interleaved at the action
level. To ensure safe access to the shared variables of the
block, these are accessed by implicit remote procedures of the
state machine of the block.

8 Learning more
The SDL-2000 Recommendation is 200 pages of concise
information and is probably only suitable as a reference
document. Obviously, a short article such as this one cannot
be comprehensive. At the time of writing no tools have been
released and no books has been published, and as far as the
author knows this is the first tutorial style article to be
published.
However, by the end of the year 2000 the author expects the
situation to changed, and the best way of getting up-to-date
information on SDL is to access http://www.sdl-forum.org.

References
1. Z.100 (11/99) Specification and Description Language

(SDL), ITU-T, 2000.
2. Z.100 (03/93) CCITT Specification and Description

Language (SDL), ITU-T, 1994.

3. Bræk, R., et. al., TIMe � The Integrated Method version
4.0 � TIMe at a glance, SINTEF.

4. Z.120 (11/99), Message Sequence Chart (MSC),
ITU-T Geneva, 1999.

5. Haugen, Ø., MSC-2000: interacting with the future,
Telektronikk, this issue.

6. Z.109 (11/99) SDL combined with UML,
ITU-T Geneva, 2000.

7. Willcock, C, A Tutorial Introduction to ASN.1 97 new
features and language evolution, Telektronikk, this issue.

8. Z.105 (03/95) SDL Combined with ASN.1
(SDL/ASN.1), ITU-T Geneva, 1995.

9. Møller-Pedersen, B, SDL Combined with UML,
Telektronikk, this issue.

	I
	Introduction to SDL
	Simple structure
	Simple behaviour

	Basic communication and timers
	Signal communication
	Timers

	System engineering
	Structure and types
	Inheritance and virtuality
	Context parameters
	Constraints
	Packages

	Data
	User data types
	Support for ASN.1

	Agent creation
	State machine diagrams
	Stimulus handling
	Transitions
	Composite states
	Procedures
	Textual algorithms
	Exceptions

	Communications
	Communication using Remote procedures
	Communication using variables

	Learning more

